The Down syndrome critical region protein TTC3 inhibits neuronal differentiation via RhoA and Citron kinase.

نویسندگان

  • Gaia Berto
  • Paola Camera
  • Carlo Fusco
  • Sara Imarisio
  • Chiara Ambrogio
  • Roberto Chiarle
  • Lorenzo Silengo
  • Ferdinando Di Cunto
چکیده

The Down syndrome critical region (DSCR) on Chromosome 21 contains many genes whose duplication may lead to the major phenotypic features of Down syndrome and especially the associated mental retardation. However, the functions of DSCR genes are mostly unknown and their possible involvement in key brain developmental events still largely unexplored. In this report we show that the protein TTC3, encoded by one of the main DSCR candidate genes, physically interacts with Citron kinase (CIT-K) and Citron N (CIT-N), two effectors of the RhoA small GTPase that have previously been involved in neuronal proliferation and differentiation. More importantly, we found that TTC3 levels can strongly affect the NGF-induced differentiation of PC12 cells, by a CIT-K-dependent mechanism. Indeed, TTC3 overexpression leads to strong inhibition of neurite extension, which can be reverted by CIT-K RNAi. Conversely, TTC3 knockdown stimulates neurite extension in the same cells. Finally, we find that Rho, but not Rho kinase, is required for TTC3 differentiation-inhibiting activity. Our results suggest that the TTC3-RhoA-CIT-K pathway could be a crucial determinant of in vivo neuronal development, whose hyperactivity may result in detrimental effects on the normal differentiation program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DCR Protein TTC3 Affects Differentiation and Golgi Compactness in Neurons through Specific Actin-Regulating Pathways

In neuronal cells, actin remodeling plays a well known role in neurite extension but is also deeply involved in the organization of intracellular structures, such as the Golgi apparatus. However, it is still not very clear which mechanisms may regulate actin dynamics at the different sites. In this report we show that high levels of the TTC3 protein, encoded by one of the genes of the Down Synd...

متن کامل

Tetratricopeptide repeat domain 3 overexpression tends to form aggregates and inhibit ubiquitination and degradation of DNA polymerase γ

Tetratricopeptide repeat (TPR) domain 3 (TTC3) is a protein that contains canonical RING finger and TPR motifs. It is encoded by the TTC3 gene located in the Down syndrome critical region (DSCR). In this study, we used a yeast two-hybrid assay to identify several proteins that physically interact with TTC3, including heat shock proteins and DNA polymerase γ (POLG). When TTC3 was overexpressed i...

متن کامل

Citron-kinase, a protein essential to cytokinesis in neuronal progenitors, is deleted in the flathead mutant rat.

Cytokinesis is an essential step in neurogenesis, yet the mechanisms that control cytokinesis in the developing CNS are not well understood. The flathead ( fh) mutation in rat results in cytokinesis failure in neural progenitors followed by apoptosis and a dramatic reduction in CNS growth. Here we present evidence that the fh mutation is caused by a single base deletion in exon 1 of the gene en...

متن کامل

The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt.

The serine threonine kinase Akt is a core survival factor that underlies a variety of human diseases. Although regulatory phosphorylation and dephosphorylation have been well documented, the other posttranslational mechanisms that modulate Akt activity remain unclear. We show here that tetratricopeptide repeat domain 3 (TTC3) is an E3 ligase that interacts with Akt. TTC3 contains a canonical RI...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 120 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2007